Headquarters U.S. Air Force

Integrity - Service - Excellence

Measuring Performance: An Overview

Robert Sextro
Mitretek Systems
29 January 2001

General Overview

- General principles and practices
- Specific technologies

Indicates Rules of Thumb (throughout the briefing)

Principles and Practices

- Strategy and planning
- Measuring performance
- Analyzing performance

Strategy

- Keep it Simple Stupid (KISS)
- Just right (optimal)
 - Not too many
 - Not too few
- Must be consistent w/conceptual site model
- Strategize how to get what you need, and save time & costs

Planning

- Previous knowledge of site-characterization data
- Need systematic planning process
 - Sampling plan, SOPs, and QAPP
 - DQOs, but really decision/data optimization (Focus on inputs needed to make a decision)
 - Decision/exit rules for streamlined decision making, including decision trees
- ✓ Understand what you are doing or do not do it

Planning (Continued)

- Where is it?
- What is it?
- How is it measured?
- "Where" and "what" are very important
 - Need representative samples to analyze
 - Performance vs. Compliance vs. Process (generally during process, as well as before and after)
 - Optimize number of points and frequency
 - Use shortened method analyte lists
- ✓ If you don't need it, don't measure it

Planning (Concluded)

- How to measure
 - Screening vs. definitive data
 - Field vs. laboratory methods
- Questions to answer for measuring
 - Is method applicable and reliable?
 - Is analyte detectable at the target concentration?
 - Are results certifiable and acceptable?
 - Is it cost-effective?
 - Should I use shortened method analyte lists?
- ✓ If you can reliably measure it in the field, do it

Doing It--Sampling

- Location + # of samples + frequency = Just Right
 - Some mandated, others optional
- Sampling methods
 - Groundwater (GW): minimum draw-down
 - GW: diffusion or profile sampler
 - Gas and process: purge as necessary, then grab
 - Soil: grab or composite
- Understand rationale behind each sample

Doing It--Analysis

Screening Data

- Immunoassay kits
- X-ray fluorescence (XRF)
- Hand-held survey instruments and counters
- Indicator tests
- **■** Fiber-optic chemical sensors
- Infrared spectroscopy (IR)
- Laser-induced fluorescence (LIF)

Definitive Data

- EPA methods
- ASTM methods
- NIOSH methods
- Some proprietary and performance-based methods
- XRF
- Some survey counters (radionuclides)
- Others?

Analyzing Performance

■ Tools

- Data Assessment
 - Precision, Accuracy, Representativeness,
 Comparability, and Completeness (PARCC)
 - Initial focus on representativeness and comparability, especially when screening is combined w/definitive data
 - Then precision, accuracy, and completeness

Analyzing Performance (Concluded)

- Tools (Concluded)
 - Computer models
 - Outputs both mathematical and visual
 - Used for "Just Right" approach
 - Statistical
 - Histograms
 - Control charts
 - Tabular
 - Visualization
 - Maps: plume and distribution
 - Trend plots over time
- ✓ If performance can be shown visually, do it

Example of Trend Chart: TCE in GW over 4 years

Principles & Practices Summary

- Plan with the end in mind
 - Curtailment
 - Exit strategy and rules
- Always use DQO-type process—decision rules
- Collect data to make the decision (Just Right)
- KISS
- Measure it in the field
- Take samples that are representative
- Keep analysis of performance visual
- Understand why you are doing it or do not do it

Specific Technologies

Innovative

- Permeable Reactive Barriers *
- Phytoremediation *
- Bioremediaton *
- Monitored Natural Attenuation *

Standard

- Soil Vapor Extraction
- Pump & Treat
- Dig and Haul
- Landfill Cover *

Issues for each:

- Where and what to measure
- What to expect
- Tricks
- Rules or recommendations

^{*} To be discussed in greater detail on Days 2 & 3

Specific Technologies: Permeable Reactive Barriers

- Where to Measure
 - Compliance: GW at perimeter or guard wells
 - Performance: GW in flow path before and after reactive barrier
 - may need wells in inderlying unit
 - may need horizontal and vertical groundwater profiles

Specific Technologies: Permeable Reactive Barriers (Continued)

- What to measure (GW)
 - Depends on barrier type (reaction or sorption)
 - Specific contaminant and/or reaction by-products
 - **Examples are Cr⁶⁺, TCE and ethene**
- What to expect
 - Changes in concentrations [C] after barrier is in place
 - Reaction capacity may change over time

Specific Technologies: Permeable Reactive Barriers (Concluded)

■ Tricks

- Suitable for field measurements, with some laboratory measurements
- Consider vertical profile or diffusion sampling

Rule

- Should be uncomplicated data interpretation
 - Example: If Cr⁶⁺(in) is much greater than Cr⁶⁺(out) or if Cr⁶⁺(out) is not detected, the system is working

Visualized Example: Permeable Reactive Barrier

Hexavalent Chromium (ug/L)

Specific Technologies: Phytoremediation

- Where to measure
 - Compliance: GW at selected monitoring points, up- and downgradient and in the plume
 - Performance: GW or soil in root zone, and perhaps plant tissue
 - Probably shallow sample depths

Specific Technologies: Phytoremediation (Concluded)

- What to measure (GW and maybe soil)
 - If Phyto is uptake/extraction system, then measure contaminant(s) affected before, after, and during
 - If Phyto is bio-stimulation/transformation system, also measure anticipated reaction products
- What to expect
 - Remedy takes time, but lowers [C] eventually
- Trick
 - Give it time, and trend/chart progress
- Recommendation
 - Use computer modeling to assist performance interpretation

Visual Example: Phytoremediation

Benzene in ug/L

Specific Technologies: Bioremediation--Enhanced

- Where to measure (Compliance and Performance)
 - Specific points at or within the range of influence of stimulant addition
 - Others depend on goal of enhancement
 - If hot spot remediation, then at those spots
 - If plume stabilization, then perimeter points
- What to measure (GW)
 - Contaminants being affected for 1st-line evidence of plume stabilization (such as TCE)
 - Reaction precursors and products for 2nd-line evidence of biodegradation (vinyl chloride & ethene)

Specific Technologies: Bioremediation—Enhanced (Concluded)

- What to expect
 - A dynamic system
 - If it works effectively, outcome will be noticeable
- **■** Tricks
 - Use field measurements whenever possible
 - Use visualization techniques to assist interpretation
- Rules
 - Reaction products may be of concern
 - Measure what is needed to use computer modeling

Visual Example: Bioremediation--Enhanced

Hydrogen Release Compound at MW-3

Specific Technologies: Monitored Natural Attenuation

Where to Measure (Compliance and Performance)

plume)

- At specific points in plume and along the perimeter
 (May need monitor wells down centerline of
- Infrequent sampling or sampling directed by decision-logic diagram

Specific Technologies: Monitored Natural Attenuation

- What to measure (GW or soil gas)
 - Contaminants being affected for 1st-line evidence of plume stabilization (such as BTEX)
 - Reaction precursors and products for 2nd-line evidence of biodegradation (oxygen/carbon dioxide)
- What to expect
 - It will work on fuel constituents and on TCE in the presence of fuels or a degradable carbon source
 - Changes will take time and will be small

Specific Technologies: Monitored Natural Attenuation (Concluded)

Tricks

- Calculate assimilative capacity of system
- Measure reaction precursors/products in the field (Potential for rapid changes in form and/or concentration in the samples)

- Recommendation
 - Use models for data interpretation

Visual Example: Monitored Natural Attenuation

Soil Gas at MW-1

Specific Technologies: Soil Vapor Extraction

- **■** Where to Measure
 - Compliance: Process points, especially in and out of treatment system
 - Performance: selected monitoring and extraction points

Specific Technologies: Soil Vapor Extraction

- What to measure (soil gas)
 - Gaseous contaminants of concern (COCs), short list
 - 'Fixed' gases, such as oxygen and carbon dioxide
 - If treatment is thermal, measure criteria pollutants oxides of nitrogen and sulfur
 - If measuring chlorinated VOCs and thermal, need hydrochloric acid gas
- What to expect
 - Dynamic, rapid changes initially
 - Will reach asymptotic levels with time
 - Will remove more mass than initially estimated

Specific Technologies: Soil Vapor Extraction (Concluded)

■ Tricks

- Have consensus strategy to transition out of SVE
- Use field instruments w/some laboratory data

Recommendations

- Develop consensus rebound decision rules
- Have consensus exit strategy for site (could include some soil sampling and analyses)

Visual Example: Soil Vapor Extraction

Influent TCE (ppmv)

Specific Technologies: Pump & Treat--Groundwater

- **■** Where to Measure
 - Compliance: process points, especially in and out of treatment system
 - Performance: selected monitoring and extraction points

Specific Technologies: Pump & Treat--Groundwater

- What to measure (GW)
 - COCs (short method analyte list)
 - Mostly laboratory data
 - Process measurements dependent on treatment technology (for carbon just in and out, for air stripping/thermal may also need acid gases)
- What to expect
 - You're in it for the long-haul
 - In some cases, P&T could be the final remedy

Specific Technologies: Pump & Treat—Groundwater (Concluded)

■ Tricks

- Have *consensus* strategy to transition out
- Use integrated plume management strategy

Recommendations

- Continuously optimize monitoring and treatment process and review annually
- Have consensus exit strategy for site

Visual Example: Pump & Treat--Groundwater

Specific Technologies: Dig and Haul

- Where to Measure (Compliance and Performance)
 - For Dig--grab/composite samples to confirm all COCs below action levels
 - If Haul is treated, then before/after treatment
 - Sample to verify fill is free of contaminants

Specific Technologies: Dig and Haul

- What to measure (soil)
 - COCs above action levels
 - Use field screening to verify vertical/lateral extent removed before confirmation sampling
 - Confirmation samples w/rapid turns in laboratory
- What to expect
 - Will remove more soil volume than originally estimated
 - Uncomplicated data interpretation (if all below action)

Specific Technologies: Dig and Haul (Concluded)

Tricks

- Use field screening before final confirmation samples
- Use statistical or composite sampling approach to reduce number of samples analyzed

Recommendations

- Have decision rules for situation where confirmation samples above action levels
- Have decision rules when haul is treated

Specific Technologies: Landfill Cover

- Where to Measure (Compliance and Performance)
 - GW: points up- and down gradient
 - Gas:points on and off landfill
 - Leachate: points at leachate collection system
 - Periodic cover competency survey

Specific Technologies: Landfill Cover

- What to measure
 - GW: COCs
 - Gas: Methane, VOCs—do in field
 - Negotiate shortened method analyte lists
- What to expect
 - Long-term monitoring
 - Fairly complicated data interpretation for GW

Specific Technologies: Landfill Cover (Concluded)

Tricks

- Use field measurements as much as possible
- Do not do it at all (??)
- Recommendations
 - Optimize long-term monitoring decision rules and sampling & analysis decision tree
 - Use simple, understandable data analysis statistics and visualization tools

Visual Example: Landfill Cover

Cadmium in ug/L

Specific Technologies: Summary

- Take samples that represent the remedy process
- Use number and frequency commensurate with the process' timeline and conceptual model
- Measure only those constituents needed for decision making
- Whenever possible, measure constituents in the field
- Expect many of these remedies to take time to perform and exhibit measurable performance
- KISS
- Always have consensus change and exit strategies

Measuring Performance: Conclusions

- Understand where, why, & what you are measuring
- Develop & document consensus decision rules
- Keep It Simple Stupid
- Measure constituents in the field
- Optimize, optimize, optimize
- ∧ All of these to save time and minimize costs

References and WEB Sites

- Various AFCEE protocols on LTM optimization, process optimization, bioremediation can be found at www.afcee.brooks.af.mil/er
- Field Analytical Technologies Encyclopedia can be found at fate.clu-in.org
- Natural attenuation material can be found at www.api.org/ehs
- Phytoremediation material can be found at www.gwrtac.org
- General remedy information and guidance material can be found at www.epa.org and www.frtr.gov